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Abstract

Has our ability to simulate the filling of a mold progressed to a point where
an appropriate numerical recipe achieves the desired results? If ‘(results” are
defined to be topological robustness, computational efficiency, quantitative ac-
curacy, and predictability, all within a computational domain that faithfully
represents complex three-dimensional foundry molds, then the answer unfor-
tunately remains no. Significant interracial flow algorithm developments have
occurred over the last decade, however, that could bring this answer closer to
“maybe”. These -developments have been both evolutionary and revolutionary,
will continue to transpire for the near future. Might they become useful nu-
merical recipes for mold filling simulations? Quite possibly. Recent progress in
algorithms for interface kinematics and dynamics, linear solution methods, com-
puter science issues such as parallelization and object-oriented programming,
high resolution Navier-Stokes (NS) solution methods, and unstructured mesh
techniques, must all be pursued as possible paths toward higher fidelity mold
filling simulations. A detailed exposition of these algorithmic developments is
beyond the scope of this paper, hence we choose to focus here exclusively on
algorithms for interface kinematics. These interjace tracking algorithms are
designed to model the movement of interfaces relative to a reference frame such
a- a fixed mesh: Current-interface tracking aigorithm choices are numerous,
so is any one best suited for mold filling simulation? Although a clear winn-er
is not (yet) apparent, pros and cons are given in the following brief review.
Highlighted are those outstanding interface tracking algorithm issues that can
hamper the reliable modeling of today’s foundry mold filling processes.
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Introduction And Perspective

Interracial flows possessing multiple immiscible fluids bounded by topologically complex
interfaces are ‘ubiquitous in natural and industrial processes [I]. The active or passive
filling of a mold in a casting process is an excellent example of a complicated interracial
flow. In a typical mold filling scenario, at least four “fluids”, each separated from the other
by a discernible interface, are present: the mold material; the mold cavity material, which
is usually vacuum, air, or an inert gas; the molten liquid filling the mold cavity; and the
solidified liquid, formed subsequent to mold fill provided adequate cooling has taken place.

Simulation of the interracial flows found in mold filling via discrete numerical solution of
appropriate partial differential equations is arguably the principal path toward a funda-
mental understanding of these flows. In modeling a mold filling process, the mold can be
assumed to be relatively stationary, with movement brought about only by residual stress
or distortion. Its bounding interface, although often topologically complex, can coincide
with mesh surfaces partitioning the computational domain. The- interface delineating the
cavity gas and injected molten liquid, however, is not as easily modeled. During a typical
mold filling process, this interface will possess topologies that are not only irregular but also
dynamic, undergoirig gross changes siuch as merging, tearing, and filamenting as a result
of the flow and interface physics such as surface tension and phase change. The interface
topology requirements facing an algorithm required to track the cavity gas/molten liquid
interface are therefore formidable.

In the next section, we motivate the need for specialized algorithms designed to m~del
cavity gas/molten liquid interface kinematics during mold filling. We next take a brief
“tour” through most of the current interface tracking algorithms, then conclude with final
thoughts.

Why Is Mold Filling Simulation So Difficult?

Consider first the physical phenomena likely to be present in a typical mold filling process:
unsteady, incompressible (or slightly compressible) flow of multiple, immiscible fluids; in-
terface kinematics and dynamics (surface tension, wetting effects); convective, diffusive,
and radiative heat transfer; solidification of multi-component alloy systems having arbi-
trary phase diagrams; microstructural physics (nucleation, growth, kinetics); and material
response effects (residual stress, distortion, shrinkage, plastic flow). While developing mod-
els to simulate each phenomenon above presents formidable, individual challenges, it is the
simultaneous occurrence of these phenomena while a mold is being filled that presents the
modeling challenge. During the filling of a mold, for example, one region of the casting
might contain molten liquid free surface flow, another might be experiencing mushy zone
porous flow, while still another contains solidified material that is generating internal stress
as it cools. Each phenomenon takes place on disparate length scales. Much research re-
mains before a fundamental understanding of these inherently nonlinear phenomena and
their interplay with one another reaches a point to where first-principles models are real-
ized.

Relative to the host of physical phenomena present during a mold fill process, can the
motion and topology of the cavity gas/molten liquid interface really play a large role in
determining the final characteristics of the cast part? In short, yes. This is especially
true, however, if mold cavity geometries are.complex and heat transfer rates are such that
appreciable cooling (and/or solidification) of the molten liquid can take place during fill.
If interface kinematics are not modeled correctly during mold fill, the resulting erroneous
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interface topology and history could lead to flawed heat transfer predictions along the mold
cavity boundary. Furthermore, since the distribution of (any) porosity and molten liquid
momentum, energy, alloying species begins with the mold fill process, these could also be
modeled incorrectly if the interface tracking algorithm is not a faithful representation. An
accurate and reliable mold filling simulation therefore starts with a high fidelity interface
tracking algorithm.

Interface Tracking Algorithms: A Tour

What specific capabilities might one design into an interface tracking algorithm targeted
for mold filling simulation? The list is long. For high fidelity mold filling simulations, we
desire an interface tracking algorithm that:

RI.

R2.

R3.

R4.

R5.

R6.

R7.

R8.

R9.

R1O. can be readily maintained, improved, and extended.

is globally and locally mass conservative;

maintains (at a minimum) second order temporal and spatial accuracy;

maintains compact interface discontinuity width;
is topologically robust;

is amenable to three-dimensions on meshes of arbitrary element type/connectivity;
can accommodate additional interracial physics models;
can track interfaces bounding more than two materials;

is computationally efficient;

can be implemented by novices (given ample documentation); and

We do not require the algorithm be implicit in time, as this is unnecessary in most mold
filling situations because resolution of the dynamics is desired. To date no one algorithm
discussed in this paper adequately meets each and every design requirement itemized above.

Interface tracking algorithms generally fall into one of two methods categories, with each
category containing several schemes (discussed in the next section):

tracking methods: moving-mesh, front tracking, boundary integral, particle schemes;

capturing methods: continuum advection, volume tracking, level set, phase field schemes.

A tracking method is Lagrangian @ nature, whereby the position history of discrete points
xi lying on the interface are tracked for all time by integrating the evolution equation

dxi
‘= Vi,
dt

(1)

where Vi is the velocity with which interface point xi moves.- For moving-mesh, front
tracking, and boundary integral schemes, the points i correspond to the discrete points on
the grid line representing the interface. For particle-based schemes, the points i correspond
to individual particles (with known identity) lying along the interface. In capturing meth-
ods, the interface is not explicitly tracked, but rather ~’captured” using a characteristic
function C that is the discontinuous Heaviside function in the limit of zero mesh spacing.
For example, in the two-fluid case, C will take on constant values away from the interface:

{

cl in fluid 1;
c.= c~ in fluid 2; (2)

> Cl, < C2 at the interface;
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where we assume C2 > Cl. For finite mesh spacing, G’ is not perfectly discontinuous,
hence the region with Cl < C < Cz has finite width, on the order of the mesh spacing.

Since a point on the interface must remain there, the evolution equation for C is simply a
statement of Lagrangian invariance:

DC i3C
—==~+(v”v)c=o,
Dt

(3)

where V is the velocity at the interface. Exact Lagrangian information is not retained in
capturing methods (discarded instead for C), hence the interface location is not known
exactly. Its position is defined as the transition region where Cl < C < C2. In capturing
methods, knowledge of C allows one set of model equations to apply everywhere in the
domain. Away from the interface, the equations reduce to the correct pure fluid equations,
and within the interface, they contain appropriate discrete delta functions (formed from
C) for interracial terms [2,3].

Although differences between each scheme can be inferred from the discussions in the next
section, some categorical tracking/capturing differences pervade. In capturing methods,
the grid is usually fixed, hence topological robustness is inherent. Compact interface width,
on the other hand, is difficult to insure because of the potential for numerical diffusion
in discretization of the (V . V) C term in regions where C abruptly varies. In tracking
methods, the interface is maintained as a discontinuityy, yet 3-D topological robustness can
be elusive.

Which schemes have been used for mold filling simulations? Several have been reported in
the literature, yet the benchmark mold fill problem presented at this previous conference
(MCWASP VII) showed that most brave enough to tackle this problem employed variations
of volume tracking method [4]. Other methods are just (if not more) as viable, hence if
this benchmark were to be repeated in the future, more entries using a wider variety of
interface tracking algorithms would likely be submitted.

In the following short review, we comment on the ability of each algorithm to meet our
requirement list. Some of our comments will undoubtedly reflect our own research experi-
ences ‘and tastes. Definitive, objective comments and conclusions should only be guided by
detailed verification and validation studies [5]. For additional reviews from other general
perspectives, the reader is encouraged to consult references [6-15].

MovinE-Mesh Methods

Moving-mesh methods encompass all techniques that move the physical position of dis-
crete grid points in the computational domain by integrating equation (1) forward in time.
A moving-mesh method is Lagrangian if every point is moved, and mixed (Lagrangian-
Eulerian) if grid points in a subset of the domain are moved. Mold filling simulations
provide an excellent reason for using m~ed methods [16], where the mold computa-
tional domain can be held stationary and the molten liquid is followed with a Lagrangian
mesh [17, 18]. With the mesh boundary-fitted to the physical domain, the system of equa-
tions may be transformed into logical space [15,19,20] or expressed as integrals over discrete
control volumes [21]. Useful overviews can be found in classical [22] and more recent text-
books [12]. If the interracial flow problem to be modeled has regular interface topologies,
than a moving-mesh method can. yield very accurate-solulimm - “Regular” topcbg%s -he+e —

refer to single-valued interface topologies that do not undergo tearing, stretching, or merg-
ing. Unfortunately regular topologies are not characteristic of those encountered in mold
filling simulations.

Discrete control volumes (elements) in the computational domain encompass the same par- 1

cel of fluid in Lagrangian “moving-meshmethods, If the velocity field has appreciable shear



or vorticity, then elements must distort and freely deform with the flow, yet they cannot
because of their geometric limitations. Herein lies the principal drawback of these methods:
element distortion leads to deterioration of solution accuracy and eventual termination of
the simulation if element connectivity rules are violated. A solution to this problem is to
remesh the domain, either by keeping the original mesh connectivity constant or allowing
it to change. Lagrangian mesh methods that allow connectivity changes (including removal
or creation of elements) are known as free Lagrange methods [23]. Both conventional La-
grangian [24,25] and free Lagrange [26] methods have been used incompressible interracial
flows. The principal problem with remeshing is the potential for global numerical diffusion
and difficulty in demonstrating convergence. These issues must be quantified and overcome
before moving-mesh methods can be competitive and viable for mold filling simulations.

Front Tracking Methods. . .. .,-.

Explicit front tracking has its roots in the original MAC method [27] and its extensions
by Daly [28]. The interface is represented discretely by Lagrangian markers connected to .
form a front which lies within and moves through a stationary Eulerian mesh. As the
front moves and deforms, interface points are added, deleted and reconnected as necessary.
The interface can in principle undergo arbitrarily complex topology changes, provided the
algorithm is capable of making logical topology decisions. Topological changes do not
result from a set of localized interface physics models, instead resulting from algorithm
intervention, via decisions such as whether or not to “cut” a front into pieces or to join two
fronts into one. This algorithm as designed is not explicitly mass conservative, although
conservation tends to be reasonably adhered to for topologically regular interfaces and
high densities of marker particles (per unit interface length). Further details on the front
tracking method can be found in [15,29-31].

Interface information is passed between the moving Lagrangian interface and the stationary
Eulerian mesh using ideas borrowed from the immersed interface method [2,3]. With this
technique, the sharp interface is approximated by a smooth distribution function that is
used to distribute the sources at the interface over mesh points nearest the interface. The
front is therefore given a finite (mesh size) thickness to provide stability and smoothness.
Numerical diffusion is absent since this thickness remains constant for all time. The front
tracking distribution function is the previously-mentioned function C, hence this portion of
the algorithm is akin to capturing methods. Mass conservation is violated in front tracking
methods because no single C contour will in general coincide with the interface formed by
connecting the Lagrangian markers.

Front tracking metho_dshave been successfully applied to a variety of interracial flow prob-
lems: gas dynamics [29, 30], incompressible flow with and without phase change [32-35],
and microstructure evolution in alloy solidification [36, 37]. It has also been recently
demonstrated that front tracking methods can reasonably withstand 3-D topological chal-
lenges [34]. Key outstanding issues are whether the conservation properties and topologi-
cal robustness are adequate for 3-D mold filling simulations. Implementation complexities
could also continue to preclude its widespread acceptance and use.

Particle-Based Methods

Particle-based methods are characterized by the use of discrete “particles” to represent
macroscopic fluid parcels [38]. The Lagrangian NS equations are integrated on globs of
fluid (the “particIes” ) having properties such as mass, momentum, and energy. Using a
particle-based method for modeling interracial flows is attractive because diilicult nonlin-
ear advection terms in the NS equations are simply modeled as particle motion, and, by
knowing the identity and position of each particle, material interfaces are automatically
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tracked. By using particle motion to approximate the advection terms, numerical diffusion
across interfaces (where particles change identity) is virtually zero, hence interface widths

I remain compact. Particle-based methods can be roughly broken down into two principal
categories: those that use particles in conjunction with a grid, namely the particle-in-cell
(PIC) methods [39], and those that are “meshless” [40], such as the so-called smoothed
particle hydrodynamics (SPH) methods [41,42].

F. Harlow and coworkers invented the first particle-based method over forty years ago, the
ingenious PIC method [43,44]. The PIC method (and its countless variations) then enjoyed
explosive use and development over the next twenty years or so [39], where it became
the method for modeling highly distorted interracial flows. It has enjoyed a slow and
steady resurgence since the mid 1980s, in large part due to innovative new developments
and improvements [45–47]. Relative to Harlow’s classical PIC method, modern fill PIC
methods force particles to carry all relevant fluid information (rather than only identity,
position, and mass). This formulation was first adopted in the novel FLIP algorithm [45]
for interracial flows. The SPH method, first invented by J. Monaghan and coworkers over
twenty years ago, differs from PIC methods in that an accompanying grid is not used. Like
PIC methods, SPH methods are particularly well suited (and are generally designed) for
high-speed compressible flows such as those found in astrophysical applications and shock
dynamics.

Why have particle-based methods not been used more often (or at all) for simulating the
free surface flows found in mold filling applications? Because particle-based methods can be
prohibitively CPU and memory intensive, they have not had the ability to model low-speed
(incompressible) flows until recently [48-51], they tend to be susceptible to subtle numerical
instabilities, and they do not have adequate awareness and notoriety among researchers
in the casting modeling community. If sustained attention is paid to these outstanding
issues (e.g., the memory use issue is addressed in [5]), then many of these shortcomings
could be alleviated, whereby particle-based methods could play a vital role in mold filling
simulations. One powerful attraction to these methods is ease of implementation: they
are typically no more complex to implement on 3-D unstructured meshes than on 2-D
structured meshes.

Boundary Integral Methods

Methods of the boundary integral type [52, 53] can be highly accurate for modeling free
surface flows, especially 2-D flows with relatively regular interface topologies. In this
approach, the interface is explicitly tracked, as in moving-mesh or front tracking schemes,
but the flow solution in the entire domain is deduced solely from information possessed by
discrete points along the interface. For incompressible flows, the interface is characterized
by a velocity potential, which is represented as a distribution of point dipoles. Boundary
integral methods (BIM) were first used by Rosenhead [54] some sixty years ago to study
vortex sheet roll-up, but it took another thirty years before extensions allowed the modeling
of more general fluid interface problems [55]. Much evolution and enhancement has since
occurred in the past two decades; see Yeung [6] and Hou [53] for reviews of earlier and
more recent works, respectively. We include “vortex methods” in the class of boundary
integral methods; see the excellent reviews by Leonard [56, 57]. These methods express
the velocity of each.dkcrete inted?ace point. as an integral rela%kmthat depemls upon the
vortex strength at that point.

The principal advantages gained by using boundary integral methods are the reduction of
the flow problem by one dimension involving quantities of the interface only, and the poten-
tial for highly accurate solutions if the flow has topologically regular interfaces. Disadvan-
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tages include difficulties in extending the method to 3-D (although it has been done [57)),
sensitivity to numerical instabilities because the underlying problems are very singular,
and the need for local “surgery” of the interface in the event of topological changes, much
like the front tracking method. It is also not clear that BIM-based mold filling simula-
tions could easily adapt to the complex mold cavity geometries. BIM-based free surface
flow simulations, however, continue to generate impressive solutions for a wide variety of
applications [58].

Continuum Advection Schemes, ., ..

Continuum advection schemes refer to traditional methods for obtaining discrete numeri-
cal solutions to equation (3). This equation is perhaps the simplest form of a hyperbolic
equation, hence the countless references and textbooks available on hyperbolic equation
solution techniques can be drawn upon [59–62]. We classify these schemes as continuum ad-
vection schemes since they are usually designed upon the premise that C in equation (3) is

I
smoothly varying. A simple yet highly diffusive example is a first-order upwind “donor cell”
scheme. More accurate examples are the higher-order monotonic van Leer [63], PPM [64],
and TVD [65] schemes. Techniques similar to these schemes should be used in mold fill-
ing simulations for solutions to (3) if C represents a passive scalar, energy, solute species,
momentum, or density away from interfaces.

Continuum advection schemes-have be-enemployed as interface tracking methods in mold
filling simulations [66, 67]. Asking such schemes to track interfaces, however, forces them
to generate solutions to (3) when C is a discontinuous. This is problematic because these
schemes are not designed for this purpose, The source of this problem lies in the algebraic
treatment of the (V “V) C term; even ‘with higher-order approximations, unacceptable
broadening of the region where C varies occurs.- For example, a compressive, fourth-order
PPM method was still found to unacceptably diffuse the interface [5]. Why? Because
discontinuities in C can only remain so after solutions to (3) result from geometric approx- 1
imations to (V” V) C; continuum advection schemes approximate this term algebraically,
i.e, by taking spatial differences in C directly across the interface. Higher-order approxi-
mations to these differences can obviously mitigate this numerical diffusion, yet not nearly
well enough. Studies in addition to our own [5] found that interface widths can broaden
to many cells (4–8) even when higher-order methods are used [68]. This is not satisfactory
for an interface tracking method tasked to perform 3-D mold filling simulations.

One interesting approach to the ‘interface diffusion problem is to transform the discontin-
uous C function into another smooth function ~, solve (3) with ~, then transform ~ back
to C. In this way, the continuum advection scheme can generate solutions for which it was
designed. This idea, proposed in [69] and elsewhere, is also the basic premise of the level
set method [13].

Volume Tracking Methods “. ,,, .-

As stated previously, most of the MCWASP VII benchmark mold fill problem submissions
employed volume tracking methods. One should not infer from this, however, that this
algorithm is the best choice for tracking interfaces in mold filling simulations. It remains
the most popular and widely used tracking method for mold filling, but this could be due
to reasons other than performance: it is relatively easy to implement (at least in its crude
forms), it is an older, well-documented algorithm, it is topologically robust, and its basis
in volume fractions lends itself well to incorporation of other physics. Volume tracking
methods differ from continuum advection schemes in one principal way: the (V “V) C
in equation (3)
‘~reconstructed”

is approximated geometrically, based upon knowledge of a (nonunique)
interface position.



TZiIiEmetracking methods originated in the early 1970s, when three methods were in-
troduced within a short period of time: DeBar’s method [70], Hirt and Hichols’ VOF
method [71, 72], and Noh and Woodward’s SLIC method [73]. See [74, 75] for historical
perspectives and accounts of the chronological developments that have taken place over
the last three decades. In short, substantial evolutionary development and improvement
has taken place, rendering most of these original methods virtually obsolete [76]. Their
spatial and temporal first order accuracy is just not competitive nor adequate for modern
simulations.

Without certain key developments occurring over the last decade, volume tracking meth-
ods would not have remained competitive with newer, impressive methods such as front
tracking and level set techniques. Such developments include spatially second order,
linearity-preserving interface geometry reconstructions, multi-dimensional time integra-
tion schemes [74, 75, 77], and extensions to 3-D unstructured meshes [78]. Perhaps the
most important trend is the movement of volume tracking algorithms away from heuristic
“case-by-case” logic [79] toward a mathematically formal algorithm based upon geometric
primitives. This trend should facilitate propagation of improvements to older implementa-
tions, reduce the likeliness of any two volume tracking algorithms generating vastly different
solutions reduce implement ation difficulties, and make it easier for future researchers to
find weaknesses and devise improvements.

Given these recent developments, modern volume tracking methods are competitive with
other interface tracking methods [5,80]. They will remain viable in the future, but several
outstanding issues should be resolved. Some of these include quantification and alleviation
of numerical surface tension, improved schemes for time integration and interface normal
approximations, and improved efficiency and ease of implementation on arbitrary 3-D
meshesl.

Level Set Methods

Since introduction of the level set method by Osher and Sethian [81] only a decade ago, its
use has exploded, evidenced by the recent textbook and references therein [13]. To date,
the level set method has been used to model interracial phenomena in the fields of material
science, fluid mechanics, image enhancement, computer vision, and grid generation, to
name a few. The mathematical formalism and rigor grounded in the level set method has
helped to attract leading numerical analysts and mathematicians, resulting in its evolution,
widespread promotion and use, and increasing range of applicability.

The basic premise of the level set method is to embed the propagating interface I’(t) as
the zero level set of a higher dimensional function ~, defined as 4(x, t = O) = M, where d
is the distance from x to I’(t = O), chosen to be positive(negative) if x is outside (inside)
the initial 17(t= O). If the zero level set coincides with the initial interface, i.e., I’(-t = O) =
~(x, t = O) = O, then a dynamical equation for O(X, t) that contains the embedded motion
for I’(t) as the level set @ = O can be derived [81]:

(4)

where I’ is the speed of the interface 17in the outward normal direction. In general, F
is the sum of any applied interface propagation speed, a curvature-dependent speed, and
the flow velocity normal to interface, i.e., V “-n,.where.fi.= -v#// j.y~~.is ,the.Qni$in%erfaee
normal. For certain forms of F this equation takes on a standard Hamilton-Jacobi form,
but for the interracial flows encountered in mold filling, 1? is only V” ii, hence (4) equivalent
to (3).

ll?urther details can be found in the papers available at www.lanl. gov/home/Telluride.

● !,
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Level set methods, then, propagate interfaces by integrating the same basic scalar evo-
lution equation as other capturing” methods. The difference, however, is that the scalar
function @ in level set methods is not some discrete representation of a Heaviside (H)
function, but rather a smoothly varying distance function. Herein lies a key advantage:
highly accurate numerical solutions to equation (3) are possible (e.g., using the continuum
advection schemes previously mentioned) since @ is smoothly varying. Many such schemes
are readily available and easily implemented [61]. Herein also lies a key disadvantage: since
H is not directly integrated forward in time, it must be reconstructed each time step from
the distance function ~, ~(#) [58]. This procedure will not. be mass conservative [5] since
densities are defined from ~(@) rather than an H that is directly integrated forward in
time according to strict mass conservation.

Rigorous mass conservation is elusive in the level set method because # does not neces-
sarily remain a distance function after solutions to (4) are obtained. This is especially
true if the interface has undergone large topological changes. So-called “reinitialization”
algorithms have therefore been devised [58, 82] to insure # remains a distance function,
i.e., satisfying ]V@l = 1. Reinitialization can (and in general will) move the zero level set
position; this violates mass conservation. More accurate information is needed about the
front position so that movement of the zero level set does not occur during reinitialization.
A global mass.conservation constraint [58], acting like a Lagrange multiplier, has improved
conservation properties of the reinitialization, but local constraints are still needed. With-
out local constraints, the zero level set might still move as much as a cell width during
rei.nitialization, which artificially creates mass locally in some cells and destroys it in oth-
ers. This is not acceptable performance for an interface tracking algorithm used in mold
filling simulations. If local, geometric information is used to fix the zero level set position
during reinitialization, the algorithm is likely to have many similarities to volume tracking
algorithms [83].

Phase Field Formulations ., ,.,,, ,, ---- .

Phase field formulations have been applied to crystal growth problems and Hele-Shaw
flows over the past decade [84-87], but only recently have they shown promise for NS
flows [88–90]. Phase field models, like other Eulerian capturing methods, model interra-
cial forces as continuum forces by smoothing interface discontinuities and forces over thin
but numerically resolvable layers. This smoothing allows conventional numerical approx-
imations of interface kinematics on fixed grids. The phase field method also provides a
continuum surface tension model [91]) that is energetically and thermodynamically con-
sistent [90]. Just recently a phase field model for dendritic solidification in the presence
of melt convection (incom–pressibleNS flow) w&.sdeveloped [92]. Phase field formulations
are indeed showing promise and the ability to provide a powerful vehicle for the direct
numerical simulation of interracial phenomena.

In the case of free surface flows, the starting point is the van der Waal hypothesis, in
which the interracial energy density depends upon both @ (the phase field) and gradients
in ~. Cahn and Hilliard [93] extended this hypothesis to dynamical situations by approx-
imating interracial diffusion fluxes as being proportional to chemical potential gradients.
Jacqmin [90] recently extended the Cahp-Hilliar~ equation to allow for the_presence of
flow. Equation @“) gives Jacqmin’s evolution equation for @ (where C = @), except that
the RHS side is the Laplacian of the chemical potential rather than zero. This term is quite
interesting; it can be diffusive (positive) or anti-diffusive (negative), helping to regularize
the interface width (not too diffuse or compact). Rather than relying on special numerical
techniques in tracking algorithms to keep interface widths regular, physical mechanisms in
the phase field method do the work. Simple central difference expressions for (V” V) C

I
I



were found to be adequate in most cases [90].
● ✌✌✎

The presence of the (anti) diffusive term on the RHS of equation (3) is problematic, however:
at least three cells are needed through the interface so that the Laplacian can be properly
discretized, otherwise the interface will “stick” to the mesh [90]. Current approaches aimed
to alleviate this problem are to adaptively refine the interface region; this (or some other
solution) will be required for phase field methods to be viable in 3-D. Perhaps the physical
principles embodied in these formulations can be combined with the numerical techniques
in tracking methods to yield an improved, unified approach. Phase field formulations for
free surface flows are new and exciting, and deserve further attention and exploration.

Final Thoughts

The wide variety of interface tracking algorithms reviewed in this paper are evidence for
the many options available for modeling interracial flows. Keeping in mind that each algo-
rithm has its own unique strengths and weaknesses, which algorithm possesses strengths
best suited for mold filling simulation? Objective answers will follow only if additional sys-
tematic studies are carried out to: (1) execute controlled tests with defined flow fields and
known interface topology solutions [5], (2) perform interracial flow simulations using varied
interface tracking algorithms and the same NS flow solver [77, 80], and (3) help validate
mold filling simulation results against experimental data. Too few of these studies have
been performed, hence there is not (yet) a clear interface tracking algorithm “winner”. Our
own experiences with volume tracking, front tracking, and particle-based methods have led
us to believe that these methods have been and will continue to b.euseful. The more recent
level set and phase field methods have also exhibited impressive capabilities. Since one al-
gorithm’s strength is often another’s weakness, a very real (and welcome) possibility is the
convergence of many of these methods toward one unified method. Not to be overlooked
is the possibility that some new, robust and accurate 3-D method is yet to be discovered.
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